Merging databases

- Big Data Project-

Chloe Dimeglio

UMR 1027 team 5

April 10th 2015

- Introduction
- Mathematical question
 - Modeling in the continuous case
 - Modeling in the dicrete case
- Applied part
- Recommendations

- Introduction
- 2 Mathematical question
 - Modeling in the continuous case
 - Modeling in the dicrete case
- 3 Applied part
- 4 Recommendations

Definition

The problem when merging databases is in associating, mixing and including data from heterogeneous sources. The aim of this work is to provide a strong knowledge base to make decisions that may ultimately allow us to extract more information from merged data than we would get from using the databases seperately.

Example

Base A			Base B		
Sexe	Age	Activité	Sexe	Age	Activité
M	30	1	M	32	5
M	65	0	F	28	4
M	63	1	F	46	8
F	15	0	M	68	7
M	3	0	M	8	8
F	43	1	M	11	8

- We have two databases A and B, and a common variable "Activité" coded in two different ways in each dataset.
- In each dataset, we have the same covariables linked to the target variable.

Background

Example: longitudinal data

- If we change the mode of data collection during the same study
- If we create a common variable for the same people but at different times -> merging of longitudinal data.

Problem : How to complete the cohort?

Example: cross-sectional data

- If we collect the same information in different ways during different studies.
- If we collect the same variable for the same people at the same time t
 -> merging of cross-sectional data.

Problem: How to consider all the information?

Data fusion process

Classical methods

- Bayesian networks
- Hidden Markov Models
- Probabilistic graphical models
- Least squares technique

Xu,L., Krzyzak, A. and Suen, C. (1992): Méthods of combining multiple classifiers and their application to handwriting recognition

Moravec, H. (1987): Sensor fusion in certainty grids for mobile robots

Rabiner, L. (1989) :A tutorial on hidden Markov models and selected applications in speech recognition

Pearl, J. (1988): Probabilistic reasoning in intelligent systems

Abidi, M and Gonzalez, R (1992): Data fusion in robotics and machine intelligence

New approach

Merging databases from a common variable using optimal transport

Ambrosio, L., Brenier, Y., Buttazzo, G., Caffarelli, L., Evans, L.C., Pratelli, A. and Villani, C. (2001): Optimal transportation and applications

Villani, C. (2012): Topics in optimal transportation

- Introduction
- Mathematical question
 - Modeling in the continuous case
 - Modeling in the dicrete case
- 3 Applied part
- 4 Recommendations

Prerequisites

Framework

A and B are two databases.

We define X and Y the common variable which was coded in two different ways.

X	x1	x2	
P(X=xi)	a1	a2	
Y	у1	у2	
P(Y=yj)	b1	b2	

cov(X) et cov(Y) are the covariables associated with the common variable. Same covariables on the same scale in the two databases.

Optimal transport

Idea

We have two measures ν et μ such that $\text{law}(X) = \mu$ and $\text{law}(Y) = \nu$. We want to determine a measurable function T such that $\nu = T\mu$. T is a change of variables from μ to ν .

Continuous case

We have unicity of the function T and we garantee the optimal transportation.

Discrete case

The functions T such that $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ are all possible solutions. They are called transference plans from A to B.

The optimal transport

We introduce a **cost function** that can be interpreted as the cost of moving one unit of mass from a location in *A* to a location in *B*.

- Introduction
- Mathematical question
 - Modeling in the continuous case
 - Modeling in the dicrete case
- Applied part
- 4 Recommendations

Optimal transport : an example for continuous datasets

For instance if $X \sim \mathcal{N}(\mu_1, \sigma_1)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2)$.

We can estimate μ_2 and σ_2 in database B and μ_1 and σ_1 in database A.

Let $\hat{\mu}_1$ be the estimation of μ_1 in database A etc...

We have the following transportation :

$$X = (Y - \hat{\mu}_2)\frac{\hat{\sigma}_1}{\hat{\sigma}_2} + \hat{\mu}_1$$

We have existence and uniqueness of an optimal transport map for continuous datasets.

- Introduction
- Mathematical question
 - Modeling in the continuous case
 - Modeling in the dicrete case
- Applied part
- 4 Recommendations

Measures and transference plans

- Let $\mu = \sum_{i=1}^n a_i \delta_{x_i}$ the measure on base A and $\nu = \sum_{j=1}^m b_j \delta_{y_j}$ the measure on base B.
- ullet The transference plans are the matrix γ such as :

$$\gamma = \sum_{i,j} \gamma_{i,j} \delta_{(x_i,y_j)}$$

Where:

$$\sum_{i} \gamma_{i,j} = a_i$$

and

$$\sum_{i} \gamma_{i,j} = b_j$$

We have **not the uniqueness of the transport** -> Hitchcock's problem

The cost function

- The cost function is defined as $c(\gamma) =$ coupling risk .
- Let $c(cov(x_i), cov(y_j))$ the distance between the **covariable** distributions.

$$c(\gamma) = \sum_{i,j} \gamma_{i,j} c(cov(x_i), cov(y_j))$$

Risk of coupling



How to define a risk?

- We consider the distributions of covariables in the two bases. The more different the distributions in base A and B, the greater the risk.
- The risk is defined from the difference between the entropies of the covariable distributions.

Our aim is to minimize this risk.

Cost function

Let K be the number of covariables.

Let S be the number of modes.

Let the cost function be defined by :

$$c(\gamma) = \sum_{k=0}^K \sum_{i} \sum_{j} \sum_{s=0}^S \gamma_{i,j} \left| p_{i,s}^k \ln p_{i,s}^k - q_{j,s}^k \ln q_{j,s}^k \right|$$

Where $p_{i,s}^k = \mathbb{P}(\text{cov}_k X = a_s | x_i)$ and $q_{j,s}^k = \mathbb{P}(\text{cov}_k Y = b_s | y_j)$ with $p \ln(p) = 0$ when p = 0.

- Introduction
- 2 Mathematical question
 - Modeling in the continuous case
 - Modeling in the dicrete case
- Applied part
- 4 Recommendations

Practical case

Background

- We are interested in the wage category of a sample of people.
- In dataset A, it's rated on a scale from 1 to 2.
- In dataset B, it's rated on a scale from 1 to 3.

Data distribution

- In dataset A, 3 people were assessed as belonging to 1, and 5 people to 2.
- In dataset B, 4 people were assessed as belonging to 1, 2 to 2 and 2 to 3.

Practical case

Feasible solution

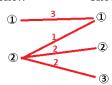
An application to transport the distribution of the variable from dataset A to dataset B satisfies the following transfer matrix :

$$\gamma = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 2 & 2 \end{pmatrix}$$

Corresponding graph

Base A

Base B



Practical case

Feasible solution

The following matrix is another solution : $\gamma = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$

Question

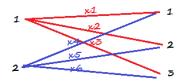
How to determine an optimal transfer?

Solving

Flow of minimum cost

• We want to determine $\operatorname{argmin}_{i,j}c(\gamma)$ under the constraints Ax=b

• Where
$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$
, $b = \begin{pmatrix} 3 \\ 5 \\ 4 \\ 2 \\ 2 \end{pmatrix}$ and $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix}$



Results

- When the variable is **completely determined by the covariables**, we have a **perfect coincidence** between the prediction and the "truth".
- We still have to test situations closer to clinical reality.

- Introduction
- 2 Mathematical question
 - Modeling in the continuous case
 - Modeling in the dicrete case
- Applied part
- Recommendations

Recommendations

- Our work is based on a **strong assumption**: when you transport a distribution from one database to another, you have to ensure the **populations are comparable**.
- If you force the behavior of a variable, you distort the information associated.
- When you transport a distribution from one database to another, you define a **reference population**. It's important to consider the **clinical reality** to ensure this definition is not too far from the objectives and the associated issues.

To be continued

- To define an allocation rule for each person
- To test the validity when introducing a randomness in determining the variable using covariables
- To test the validity of the fusion when introducing missing data

Thank you

