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Single cell optical ultrasonography
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Cell mechanics in fundamental processes

Differentiation alters stem cell nuclear
&\@ eLIFE architecture, mechanics, and mechano-

elifesciences.or Se nsitivity

Su-Jin Heo'?, Tristan P Driscoll'?, Stephen D Thorpe®, Nandan L Nerurkar®,
Brendon M Baker®®, Michael T Yang®, Christopher S Chen®®, David A Lee?,

Robert L Mauck'**
Abstract Mesenchymal stem cell (MSC) differentiation is mediated by soluble and physical cues.
In this study, we investigated differentiation-induced transformations in MSC cellular and nuclear
/ \ biophysical properties and queried their role in mechanosensation. Our data show that nuclei in
Role of cell

differentiated bovine and human MSCs stiffen and become resistant to deformation. This
attenuated nuclear deformation was governed by restructuring of Lamin A/C and increased
nucleus to heterochromatin content. This change in nuclear stiffness sensitized MSCs to mechanical-loading-
modulate induced calcium signaling and differentiated marker expression. This sensitization was reversed
mechano- when the ‘stiff’ differentiated nucleus was softened and was enhanced when the ‘soft’
undifferentiated nucleus was stiffened through pharmacologic treatment. Interestingly, dynamic
sensation during loading of undifferentiated MSCs, in the absence of soluble differentiation factors, stiffened and
differentiation condensed the nucleus, and increased mechanosensitivity more rapidly than soluble factors. These
\ / data suggest that the nucleus acts as a mechanostat to modulate cellular mechanosensation during
differentiation.
DOI: 10.7554/eLife.18207.001 RESEARCH ARTICLE Nov 30, 2016

Cell mechanics is key player in many fundamental processes: mechano-
transduction, morphogenesis, motility, mitosis, apoptosis, differentiation,
progression of degenerative diseases.
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Cell mechanics is key player in many fundamental processes: mechano-
transduction, morphogenesis, motility, mitosis, apoptosis, differentiation,

progression of degenerative diseases.
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Cell mechanics in fundamental processes

PERSPECTIVES
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OPINION

Acta Materialia 55 (2007) 3989-4014
Biomechanics and biophysics ot cancer cells ™

Subra Suresh *
B e et o e =4 The physics of cancer: the role
e m——— of physical interactions and
mechanical forces in metastasis

The past decade has seen substantial growth in research into how changes in the biomechanical and biophysical properties of cells and
subcellular structures influence, and are influenced by, the onset and progression of human diseases. This paper presents an overview of Denis Wirtz, Konstantinos Konstantopou/os and Peter C. Searson
the rapidly expanding, nascent field of research that deals with the biomechanics and biophysics of cancer cells. The review begins with
some key observations on the biology of cancer cells and on the role of actin microfilaments, intermediate filaments and microtubule Apstract | Metastasis is a complex, multistep process responsible for >90% of
biopolymer cytoskeletal components in influencing cell mechanics, locomotion, differentiation and neoplastic transformation. In order
to set the scene for mechanistic discussions of the connections among alterations to subcellular structures, attendant changes in cell cancer-related deaths. In addition to genetic and external environmental factors,
deformability, cytoadherence, migration, invasion and tumor metastasis, a survey is presented of the various quantitative mechanical . . . . PR .
and physimlyasgysto extract the ilaslic and viscoelastic deformability of cancer cclyls. l{,csults available in the litc?alurc on cell mechanics the phy5|cal interactions of cancer cells with their microenvironment, as well as
for different types of cancer are then reviewed. Representative case studies are presented next to illustrate how chemically induced cyto- their modulation by mechanical forces, are key determinants of the metastatic
skeletal changes, biomechanical responses and signals from the intracellular regions act in concert with the chemomechanical environ-

ment of the extracellular matrix and the molecular tumorigenic signaling pathways to effect malignant transformations. Results are process. We reconstruct the metastatic process and describe the 'mportance of

presented to illustrate how changes to cytoskeletal architecture induced by cancer drugs and chemotherapy regimens can significantly key physical and mechanical processes ateach step of the cascade. The emerging
influence cell mechanics and disease state. It is reasoned through experimental evidence that greater understanding of the mechanics

of cancer cell deformability and its interactions with the extracellular physical, chemical and biological environments offers enormous iNsight into these physical interactions may help to solve some long-standing

potential for significant new developments in disease diagnostics, prophylactics, therapeutics and drug efficacy assays. : : : : :
© 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. questions in disease progression and may lead to new approaches to developing
cancer diagnostics and therapies.

“Understanding of the mechanics of cancer cells... offers enormous
potential for significant developments in desease diagnostics therapeutics
and drug efficiency assays”

Cell mechanics is key player in many fundamental processes: mechano-
transduction, morphogenesis, motility, mitosis, apoptosis, differentiation,
progression of degenerative diseases.




Probing single cell mechanics
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In the nucleus of single human cells: discussion
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M’ = 15 GPa, not affected by intranuclear fluid.

[Properties of an elastic chromatin network common among several cell type.}

A volume fraction of 0.7 yields a chromatin fibre modulus of 22 GPa close to
globular proteins. Assuming a glass behaviour of intra-nuclear fluid, with
negligible elastic modulus compared to that of fibres. [

contribution of the
rigid scaffold

Soft Matter, 10, 8737, 2014




IPOM (inverted Pulsed Opto-acoustic Microscope)

Bartels, Appl. Phys. Lett., 88, 041117, 2006
Abbas, PhD Thesis, Univ. Bordeaux (2013)
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Asynchroneous set-up
16 pixels per minute

An opto-acoustic microscope suited for
single cell imaging

Micron résolution in plane (opftics)
\Sub-micron résolution in depth (acoustics) )
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Single cell ultrasonography (hMSC)
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Imaging thickness, impedance, contact stiffness
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Several cell types: senescent, monocytes, hMSC
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Fibroblast senescent cells:
stop to divide after about 50 cycles.
fibroblasts: cells of connective
tissues;

Monocytes:
a type of white blood cells;

hMSC: Human

mesenchymal stem cells:
multipotent cells that can
differentiate into osteoblast (bone),
chondrocytes (cartilage), adipocytes
(fat)...



Several cell types: senescent, monocytes, hMSC
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Cell-cell interaction (hMEC endothelial cells)
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Remote, label-free optical ultrasonography

Quantitative evaluation (functional information: metabolic
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LANELLPODIU =1155) Nucleus behaves as a solid network at this regime. The
stiffness of this scaffold is common across several cell types.

_ The inverted Picosecond Opto-acoustic Microscope
. (iPOM) allows:
o xm - mapping of the fibrilar structure of the cell, adhesion sites

o o - Assessing -thickness, impedance locally
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Probing DNA damage mechanics (coll. CENBG)
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Preliminary results. Exposure to methyl Methanesulfonate (MMS)
Occurrence of the Brillouin frequencies measured in nuclei of osteosarcoma
cells. 720 measurements performed in 20 nuclei for control cells (blue) and
cells exposed to MMS (red). The mean frequencies are 17.8 and 17.3 GHz and
Standard deviations are 0.4 and 0.8 GHz for control and exposed cells,
respectively. Cells appear softer after MMS exposure (DNA damage inducer).



Probing cell mechanics
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