Resampling methods in clinical research

Laboratoire de Statistique Théorique et Appliquée, UPMC, Paris 6

9 Avril 2015

John O’Quigley and Michel Broniatowski
Outline

1. General theory
2. Phase 2 studies: comparing means
3. Phase 3 studies: More powerful tests
4. Log-rank and other tests
General

- X_1, \ldots, X_n

- $F(x) = \Pr(X \leq x)$

- $F_n(x) = \sum_{i=1}^{n} \frac{1}{n} I(X_i \leq x)$

- $\mu = E(X; F) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{+\infty} x dF(x)$

- $\bar{x} = E(X; F_n) = \int_{-\infty}^{+\infty} x dF_n(x)$

- Variance, median, coefficient of variation: $\sigma^2(F)$, $m(F)$, $CV(F)$
Bootstrap resampling

- To obtain more accurate inference, in particular more accurate confidence intervals
- To facilitate inference for parameter estimators in complex situations.

A broad discussion including several challenging applications is provided by Politis (1998).
Bootstrap resampling

Write $\theta = \theta(F)$ and $\tilde{\theta} = \theta(F_n)$ as an estimator for $\theta(F)$.

- Infinitely many i.i.d. samples, each of size n, from F provides exact sampling properties of any estimator $\tilde{\theta} = \theta(F_n)$.

- Take a very large number, say B, of samples of size n from F provides approximations to the sampling properties of $\tilde{\theta}$.

- Replace F by F_n
Each of the B samples is viewed as an i.i.d. sample from $F_n(t)$.

- The i th resample of size n can be written $X_{1i}^*, X_{2i}^*, \ldots, X_{ni}^*$ and has empirical distribution $F_{ni}^*(t)$.
- $\theta(F)$ is the population quantity of interest.
- $\theta(F_n)$ is this same quantity defined with respect to the empirical distribution F_n.
- $\theta(F_{ni}^*)$ is again the same quantity defined with respect to the i th empirical distribution of the resamples $X_{1i}^*, X_{2i}^*, \ldots, X_{ni}^*$.
- Finally, $F_B(\theta)$ is the bootstrap distribution of $\theta(F_{ni}^*)$, i.e., the empirical distribution of $\theta(F_{ni}^*)$ ($i = 1, \ldots, B$).
Bootstrap resampling: large sample theory

- As $B \to \infty$, $\int u dF_B(u) \xrightarrow{p} \theta(F_n)$

- As $n \to \infty$, $\theta(F_n) \xrightarrow{p} \theta(F)$.

F_B deals with the distribution of $\theta(F_{n}^{*i})$ ($i = 1, \ldots, n$) and therefore, when our focus of interest changes from one parameter to another, from say θ_1 to θ_2 the function F_B would be generally quite different.

This is not the case for F, F_n and F_{n}^{*i}.
Bootstrap resampling: confidence intervals

- \(\text{Var} \{ \theta(F_n) \} = \sigma_B^2 = \int u^2 dF_B(u) - \left(\int udF_B(u) \right)^2 \)

- \(\text{Var}(\cdot|F_B) \) is wrt the distribution \(F_B(x) \).

- \(\text{Var} \{ \theta(F_n)|F_B \} \), can be used as an estimator of \(\text{Var} \{ \theta(F_n)|F \} \)

- \(\text{Var} \theta(F_n) = \sigma^2, \quad Q_\alpha = \sigma z_\alpha, \quad \Phi(z_\alpha) = \alpha. \)

- \(I_{1-\alpha}(\theta) = \{ \theta(F_n) - Q_{1-\alpha/2}, \ \theta(F_n) - Q_{\alpha/2} \} \)
Bootstrap resampling: confidence intervals

- Instead of $\sigma^2(F)$ use σ^2_B.

- Instead of normal approximation can define $F_B(Q_\alpha) = \alpha$.

- If no exact solution use nearest approximation $F_B^{-1}(\alpha)$ as Q_α.

- The intervals are called bootstrap “root” intervals.
Bootstrap resampling: confidence intervals

- Use $I_{1-\alpha}(\theta) = \{\theta(F_n) + Q_{\alpha/2}, \theta(F_n) + Q_{1-\alpha/2}\}$ where $Q_{\alpha/2}$ and $Q_{1-\alpha/2}$ are percentiles of F_B

- The intervals are called bootstrap percentile intervals

- When F_B symmetric, $Q_{\alpha/2} + Q_{1-\alpha/2} = 0$, and percentile intervals and root intervals coincide

- They coincide, in particular, under normal approximation
Bootstrap resampling: accuracy of confidence intervals

- Edgeworth expansions show accuracy of all 3 types of interval to be the same.

- Studentized methods lead to slight gains in accuracy. For the ith bootstrap sample our estimate of the variance is
 \[
 \text{Var}\left\{\theta(F_n^i)\right\} = \sigma_{*i}^2 = \int u^2 dF_n^i(u) - (\int udF_n^i(u))^2
 \]
 and we then consider the standardized distribution of the quantity, $\theta(F_n^i)/\sigma_{*i}$.

- Bias-corrected, accelerated intervals, called BC_a intervals.
Closely related methods

- Jacknife
- Cross-validation
- Permutation tests, eg. Fisher’s “exact” test
- Subsampling
- Wild, block, cluster, smooth, parametric bootstrap
Main limitations and difficulties

- Small samples
- High dimensional problems
- Maintaining correlation structure in complex models
- Misspecified models, when \(X(F_n) \not\xrightarrow{d} X(F) \)
ACR (analytic conditional resampling)

- If $F(x) = \Pr(X \leq x)$ and $Y = F(X)$ then $\Pr(Y < y) = y$

- Let $Y_{(1)}, ..., Y_{(n)}$ be order statistics for $Y_1, ..., Y_n$ and let $W_i = Y_i - Y_{(i-1)}$ for $i = 1, ..., n$.

Main Theorem

Let $V_i, i = 1, ..., n$, be i.i.d. where $\Pr(V_i \leq v) = 1 - \exp(-v)$, and let $W_i^* = V_i / \sum_{j=1}^{n} V_j$ then, $W_i \approx W_i^*$.
ACR (analytic conditional resampling)

- We condition on the data X_1, \ldots, X_n

- Estimating equation is of the form $\int U(s) dG(s) = 0$

- Obtain “exact” analytic conditional solutions based on W^*

- Numerical approximations based on Cornish-Fisher or Saddlepoint methods
Inference for the mean

- \(X_1, \ldots, X_n \sim F(x) \) with \(E(X) = \mu \), \(\text{Var}(X) = \sigma^2 \)

- \(\bar{x} = \hat{\mu} = n^{-1} \sum_i X_i \)

- \(\bar{x} = \sum_i W_i X_i, \quad \sum_{i=1}^n W_i = 1 \)

- Replace \(W_i \) by \(W_i^* \)

- Replace \(\mu \) by \(\bar{x} \) and \(\sigma^2 \) by usual empirical variance; then the two approaches agree in the first two moments.
Fisher’s exact test

Table: Conditional test of two proportions

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ ve</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>- ve</td>
<td>9</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
</tbody>
</table>

\[T = \sum_{i=1}^{34} W_i Y_i \]

Base test on \(\det(A|H_0) \) where \(A \) is above matrix.
Analytic conditional resampling in survival analysis

When conditioning on the risk sets,

- $Z(t_i)$ is the covariate of the failing subject at time t_i,
- $E_{\beta_0}(Z|t_i)$ and $V_{\beta_0}(Z|t_i)$ are the expectation and variance of $Z(t_i)$,
- $Z(t_i)$ is independent of $Z(t_j)$, $i \neq j$

(Cox 1975, Andersen and Gill 1982).
Analytic conditional resampling in survival analysis

When conditionning on the risk sets,

- \(Z(t_i) \) is the covariate of the failing subject at time \(t_i \),
- \(\mathcal{E}_{\beta_0}(Z|t_i) \) and \(\mathcal{V}_{\beta_0}(Z|t_i) \) are the expectation and variance of \(Z(t_i) \),
- \(Z(t_i) \) is independent of \(Z(t_j), i \neq j \) (Cox 1975, Andersen and Gill 1982).

For \(j = 1, \ldots, k_n \), the standardized score process is

\[
U^*(\beta_0, t_j) = \frac{1}{\sqrt{k_n}} \sum_{i=1}^{j} \mathcal{V}_{\beta_0}(Z|t_i)^{-1/2} \left(Z(t_i) - \mathcal{E}_{\beta_0}(Z|t_i) \right)
= \frac{1}{\sqrt{k_n}} \int_{0}^{t_j} \mathcal{V}_{\beta_0}(Z|s)^{-1/2} \left(Z(s) - \mathcal{E}_{\beta_0}(Z|s) \right) d\tilde{N}(s).
\]
For \(j = 1, \ldots, k_n \), the standardized score process is

\[
U^*(\beta_0, t_j) = \frac{1}{\sqrt{k_n}} \sum_{i=1}^{j} \nu_{\beta_0}(Z|t_i)^{-1/2} \left(Z(t_i) - \mathcal{E}_{\beta_0}(Z|t_i) \right).
\]

Theorem

\(\forall \ t \in [0; 1], \text{under the Cox model of parameter } \beta_0, \)

\[
U^*(\beta_0, t) \xrightarrow{D} W(t), \quad n \to \infty
\]

where \(W \) is a standard Brownian motion process.
\[\beta = \log(4) \]
\[n = 200 \]
\[Z \sim \mathcal{E}(0.5) \]
\begin{align*}
\beta &= 0 \\
n &= 200 \\
Z &\sim \mathcal{E}(0.5)
\end{align*}
\[\beta = 0 \]
\[n = 200 \]
\[Z \sim \mathcal{E}(0.5) \]
\begin{align*}
\beta &= 0 \\
n &= 200 \\
Z &\sim \mathcal{E}(0.5)
\end{align*}
Theorem

$\forall t > 0, \forall \beta_0$, under the Cox model of parameter β,

$$U^*(\beta_0, t) - \sqrt{n}(\beta - \beta_0)A_n(t) \xrightarrow{D} W(t),$$

where $A_n(t)$ is an explicit process converging to a deterministic known function $A(t)$ with probability 1.
Theorem
∀ t > 0, ∀ β₀, under the Cox model of parameter β,

\[U^*(β₀, t) - \sqrt{n}(β - β₀)A_n(t) \xrightarrow{n \to \infty} W(t), \]

where \(A_n(t) \) is an explicit process converging to a deterministic known function \(A(t) \) with probability 1.

For a fixed \(n \), for all \(t > 0 \),

\[U^*(β₀, t) \xrightarrow{D} W(t) + \sqrt{n}(β - β₀)A(t) \]
Theorem

∀t > 0, ∀β₀, under the Cox model of parameter β,

\[U^*(β₀, t) - \sqrt{n}(β - β₀)A_n(t) \xrightarrow{D} W(t), \]

where \(A_n(t) \) is an explicit process converging to a deterministic known function \(A(t) \) with probability 1.

For a fixed \(n \), for all \(t > 0 \),

\[U^*(β₀, t) \approx W(t) + \sqrt{n}(β - β₀)A(t) \]
\[U^*(β₀, t) \approx W(t) + C\sqrt{n}(β - β₀)t \]

In this situation, \(U^*(β₀, t) \) can be approximated by a standard brownian motion with linear drift.
Theorem

∀t > 0, ∀β₀, under the Cox model of parameter β,

\[U^*(β₀, t) - \sqrt{n}(β - β₀)A_n(t) \xrightarrow{D \text{ as } n \to \infty} W(t), \]

where \(A_n(t) \) is an explicit process converging to a deterministic known function \(A(t) \) with probability 1.

For a fixed \(n \), for all \(t > 0 \),

\[U^*(β₀, t) \approx W(t) + \sqrt{n}(β - β₀)A(t) \]
\[U^*(β₀, t) \approx W(t) + C\sqrt{n}(β - β₀)t \]

In this situation, \(U^*(β₀, t) \) can be approximated by a standard brownian motion with linear drift.

Application: In practice, the process \(U^* \) is assessed in \(β₀ = 0 \).
\[\beta = 0 \]

\[n = 500 \]

\[Z \sim B(0.5) \]
$\beta = 0$

$n = 500$

$Z \sim \mathcal{B}(0.5)$
\[\beta = \log(2) \]

\[n = 500 \]

\[Z \sim B(0.5) \]
\[\beta = \log(4) \]

\[n = 500 \]

\[Z \sim \mathcal{B}(0.5) \]
Non-proportional hazards model

Define the class of non-proportional hazards model as follows

$$\lambda(t|Z) = \lambda_0(t) \exp(\beta(t)Z),$$

where $\lambda_0(t)$ is a baseline hazard, $\beta(t)$ a time-dependent regression parameter and Z a covariate.
Non-proportional hazards model

Define the class of non-proportional hazards model as follows

\[\lambda(t|Z) = \lambda_0(t) \exp(\beta(t)Z), \]

where \(\lambda_0(t) \) is a baseline hazard, \(\beta(t) \) a time-dependent regression parameter and \(Z \) a covariate.

When \(\beta(t) = \beta_0 \), the model satisfies the proportional hazards assumption (Cox 1972).
Non-proportional hazards model

Define the class of non-proportional hazards model as follows

\[
\lambda(t|Z) = \lambda_0(t) \exp(\beta(t)Z),
\]

where \(\lambda_0(t)\) is a baseline hazard, \(\beta(t)\) a time-dependent regression parameter and \(Z\) a covariate.

When \(\beta(t) = \beta_0\), the model satisfies the proportional hazards assumption (Cox 1972).

What is the shape of the standardized score process if the ”true” coefficient is not constant over time?
Theorem

∀t ∈ [0; 1], under the non-proportional hazards model of parameter β(t),

\[U^*(0, t) - \sqrt{n}\beta(t)B_n(t) \xrightarrow{D} W(t), \]

where \(B_n(t) \) is an explicit process converging to a deterministic known function \(B(t) \), with probability 1.

In this case, the shape of the drift reflects the shape of \(\beta(t) \).
Theorem

∀t ∈ [0; 1], under the non-proportional hazards model of parameter β(t),

\[U^*(0, t) - \sqrt{n}\beta(t)B_n(t) \xrightarrow{D} W(t), \]

where \(B_n(t) \) is an explicit process converging to a deterministic known function \(B(t) \), with probability 1.

For a fixed \(n \), for all \(t > 0 \),

\[U^*(0, t) \approx W(t) + \sqrt{n}B(t)\beta(t) \]
Theorem

∀t ∈ [0; 1], under the non-proportional hazards model of parameter \(\beta(t) \),

\[
U^*(0, t) - \sqrt{n}\beta(t)B_n(t) \xrightarrow{D} \frac{D}{n \to \infty} W(t),
\]

where \(B_n(t) \) is an explicit process converging to a deterministic known function \(B(t) \), with probability 1.

For a fixed \(n \), for all \(t > 0 \),

\[
\begin{align*}
U^*(0, t) &\quad \Rightarrow \quad W(t) + \sqrt{n}B(t)\beta(t) \\
U^*(0, t) &\quad \Rightarrow \quad W(t) + \sqrt{n}Kt\beta(t)
\end{align*}
\]

In this case, the shape of the drift reflects the shape of \(\beta(t) \).
Non-proportional hazards

\[n = 600 \]

\[\beta(t) = 1_{t \leq 0.5} + 0.21_{t > 0.5} \]
Non-proportional hazards

\[n = 600 \]

\[\beta(t) = 1_{t \leq 0.5} + 0.21_{t > 0.5} \]

ratio of slopes
\[= 2.4/10.5 \approx 0.22. \]
\[n = 300 \]

\[\beta(t) = 2(1 - t) \]
\[
\beta(t) = 2(1 - t)
\]

\[
\begin{array}{ccc}
\beta(t) & \hat{\beta}_0 & R^2 \\
\beta_0 & 1.01 & 0.22 \\
\beta_0(1 - t) & 1.99 & 0.40 \\
\beta_0(1 - t^2) & 2.63 & 0.38 \\
\beta_0 \log(t) & -0.86 & 0.26 \\
\end{array}
\]
Freireich dataset

42 patients, 29% of censoring.

\[
\begin{array}{c|c|c}
\beta(t) & \hat{\beta}_0 & R^2 \\
\hline
\beta_0 & 1.6 & 0.41 \\
\beta_0 t & 2.43 & 0.32 \\
\beta_0 t^2 & 3.00 & 0.28 \\
\beta_0 t^3 & 3.48 & 0.25 \\
\beta_0 (1 - t) & 2.7 & 0.3 \\
\beta_0 (1 - t)^2 & 3.68 & 0.25 \\
\beta_0 (1 - t^2) & 2.03 & 0.32 \\
\end{array}
\]
Advanced lung cancer - Karnofsky score

167 patients, 23\% of censoring.

<table>
<thead>
<tr>
<th>(\beta(t))</th>
<th>(\hat{\beta}_0)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0)</td>
<td>-0.33</td>
<td>0.03</td>
</tr>
<tr>
<td>(\beta_0 \mathbf{1}{t \leq 0.6} - 0.31 \mathbf{1}{t \geq 0.6})</td>
<td>-0.58</td>
<td>0.06</td>
</tr>
<tr>
<td>(\beta_0 \mathbf{1}_{t \leq 0.5})</td>
<td>-0.82</td>
<td>0.08</td>
</tr>
<tr>
<td>(\beta_0 (1 - t))</td>
<td>-0.83</td>
<td>0.05</td>
</tr>
<tr>
<td>(\beta_0 (1 - t)^2)</td>
<td>-1.06</td>
<td>0.05</td>
</tr>
<tr>
<td>(\beta_0 (1 - t^2))</td>
<td>-0.64</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Advanced lung cancer- Karnofsky score

167 patients, 23% of censoring.

\[
\begin{array}{c|c|c}
\beta(t) & \hat{\beta}_0 & R^2 \\
\hline
\beta_0 & -0.33 & 0.03 \\
\beta_0(1_{t \leq 0.5}) & -0.82 & 0.08 \\
\beta_0(1 - t) & -0.83 & 0.05 \\
\beta_0(1 - t)^2 & -1.06 & 0.05 \\
\beta_0(1 - t^2) & -0.64 & 0.05 \\
\end{array}
\]
Advanced lung cancer - Karnofsky score

167 patients, 23% of censoring.

\[
\begin{array}{l|l|l}
\beta(t) & \hat{\beta}_0 & R^2 \\
\hline
\beta_0 & -0.33 & 0.03 \\
\beta_0 (1_{t \leq 0.6} - 0.31 \cdot 1_{t \geq 0.6}) & -0.58 & 0.06 \\
\beta_0 1_{t \leq 0.5} & -0.82 & 0.08 \\
\beta_0 (1 - t) & -0.83 & 0.05 \\
\beta_0 (1 - t)^2 & -1.06 & 0.05 \\
\beta_0 (1 - t^2) & -0.64 & 0.05 \\
\end{array}
\]
Advanced lung cancer - ECOG

\[
\beta(t) \quad \hat{\beta}_0 \quad R^2
\]
\[
\begin{array}{ccc}
\beta_0 & 0.72 & 0.09 \\
\beta_0 \mathbf{1}_{t \leq 0.5} & 1.10 & 0.13 \\
\beta_0 (1 - t) & 1.36 & 0.12 \\
\beta_0 (1 - t)^2 & 1.69 & 0.11 \\
\beta_0 (1 - t^2) & 1.07 & 0.11 \\
\end{array}
\]
How to model NPH problems
Distance from origin test (log-rank)

\[H_0 : \beta = \beta_0 \text{ against } H_1 : \beta \neq \beta_0. \]

Lemma

Set \(z^\alpha \) such that \(\alpha = 2(1 - \Phi(z^\alpha)) \). The distance from origin test rejects \(H_0 \) with a type I error \(\alpha \) if \(|U^*(\beta_0, t) / \sqrt{t}| \geq z^\alpha \).

The test p-value is given by \(2 \left[1 - \Phi \left(|U^*(\beta_0, t) / \sqrt{t}| \right) \right] \). At time \(t \) this is then a good test for absence of effect.
Integrated Brownian motion test

Area under the curve is given by

\[J(\beta_0, t) = \int_0^t U^*(\beta_0, u) \, du \]

Lemma

\(J(\beta_0, t) \) converges in distribution to integrated brownian motion, i.e., a Gaussian process with mean zero and covariance process

\[
\text{Cov} \{ J(\beta_0, s), J(\beta_0, t) \} = s^2 \left(\frac{t}{2} - \frac{s}{6} \right) \quad (s < t). \tag{1}
\]

\(p \)-value corresponding to the null hypothesis obtains from

\[
\Pr \left\{ \sqrt{3} \left| \frac{J(\beta_0, t)}{t^{1/2}} \right| > z \right\} = 2(1 - \Phi(z)).
\]
Combining AUC and log-rank

Lemma

Under the model proportional hazards model \(\beta(t) = \beta_0\), the covariance function of \(J(\beta_0, t)\) and \(U^*(\beta_0, t)\), converges in probability to \(t^2/2\).

Distance from origin test most powerful under PH alternatives while AUC can be more powerful under non-PH alternatives. Combinations good in both situations.
\[D(\theta, \beta_0, t) = \theta U^*(\beta_0, t) + (1 - \theta) J(\beta_0, t), \quad 0 \leq \theta \leq 1. \]

Therefore, under the hypothesis \(H_0 : \beta = \beta_0 \), the following corollary is obtained

Corollary

Under \(H_0 : \beta = \beta_0 \), \(D(\theta, \beta_0, t) \) converges in distribution to a centered normal law with variance equals to \(t\theta^2 + \frac{t^3}{3} (1 - \theta)^2 + \frac{t^2}{2} \theta (1 - \theta) \).
\[M(\beta_0, t) = \max \left\{ |U^*(\beta_0, t)|, \sqrt{3}|J(\beta_0, t)| \right\}. \]

(2)

The gaussian limit distribution of the vector of which components are the distance from origin and the area under the curve statistics enables the following corollary

Corollary

\[\forall q > 0, \quad P(M(\beta_0, t) \geq q) \xrightarrow{n \to \infty} 1 - 2 \int_0^q \int_0^q \phi(u, v; 0, \Sigma(t)) \, du \, dv, \]

(3)

where \(\phi(u, v; 0, \Sigma(t)) \) is the density of the centered normal distribution in \(\mathbb{R}^2 \) with \(\Sigma(t) = \begin{pmatrix} t & \sqrt{3}t^2/2 \\ \sqrt{3}t^2/2 & t^3 \end{pmatrix} \) as a covariance matrix, assessed in \((u, v)\).
Example in marrow transplantation

Figure: Kaplan-Meier estimates of survival for marrow transplant data
Process for marrow transplantation data

Figure: log-rank p-value = 0.15, AUC p-value = 0.008, Adaptive p-value = 0.01

(Figure ??).