

How could we design studies on PRO data?

The PLANIPRO project

Véronique Sébille, Myriam Blanchin, Alice Guilleux, Alexandra Rouquette, Sarah Amri, Mohand-Larbi Feddag, Tanguy Le Néel, Gildas Kubis, Bruno Falissard, Francis Guillemin, Jean-Benoit Hardouin

EA 4275 "Biostatistics, Pharmacoepidemiology and Subjective Measures in Health Sciences"

Université de Nantes

INSERM U 669, Universités de Paris 11 et Paris 5 EA 4360, Universités de Lorraine, Paris 5, Metz

Background

- Evaluation of Patient Reported Outcomes (PRO)
 - How can we design these studies ?
 - Are studies adequately powered to determine clinically important changes in PRO?
 - Justification of study size is not always provided
 - WHY?
 - Should we worry about it?

Importance of sample size

- "Statistical analysis allows us to put limits on our uncertainty, but not to prove anything." Altman DG. Practical Statistics for Medical Research. London, UK: Chapman & Hall; 1991.
- Clinical investigator's question: "How many individuals will I need to study?" ..."It will only take 5 min"
- Adequate sample size likely to give enough power to detect a meaningful difference

 ⇒ ethical, clinical, methodological
 - Patients exposed to the burdens and risks of human research with a limited chance to provide any useful answers

Importance of sample size

- Taking time to think about important issues
 - The primary endpoint (secondary endpoints)
 - Expected clinically important difference on the primary endpoint
 - Type I and II errors
- Sample size needed for the <u>planning</u> and interpretation of clinical research

Sample size for PRO studies

- Clinical research methodology ⇒ has reached a high level of requirements
 - Publication of international guidelines (consort, strobe, TREND, STARD, STREGA, CONSORT PRO ...)
 - "Study size"; "How sample size was determined"
- What do (can, should?) we do for PRO studies?
 - Two main types of analytic strategies
 - Classical test theory (CTT) ⇒ observed scores
 - Item Response Theory (IRT) ⇒ latent variable (latent trait)

Sample size for PRO studies

- Classical test theory (CTT) ⇒ observed scores
 - Most common framework
 - Sample size determination for normally distributed endpoints
 - Classical sample size formula

$$N = \frac{4\sigma_S^2 \left(z_{1-\alpha/2} + z_{1-\beta}\right)^2}{\delta_S^2}$$

⇒ Adequate power for CTT analyses

Sample size for PRO studies

- Item Response Theory (IRT) ⇒ latent trait
 - Assumed normally distributed
 - Most sample size calculations (if any) \rightarrow Classical sample size formula for normally distributed endpoints
 - Inadequate for IRT → sample size underestimated

 ⇒ BMC Medical Research Methodology, 2010;10:24.
- Consequences for sample size planning for IRT
 - Latent (≠ manifest) variable + model → creates uncertainty on parameters

The PLANIPRO project

Main objective

- Provide valid sample size methodology
 - Comparison of PRO in two groups of patients (or between 2 times)
 - Cross-sectional & longitudinal studies
 - Using IRT modeling strategies (Rasch and Partial Credit models)
- Proposed approach ⇒ Statistics in Medicine, 2012;31:1277-90.
 - Analytical and numerical development based on the variance of the group (time) effect parameter & Wald test

Methods

Sample size

- Detect a group effect γ with power 1-β and type I error α
 - Closely related to the Wald test of group effect
 - Based on an estimate Γ of γ and SE(Γ)
 - Derivation of $SE(\Gamma)$
 - Includes parameters related to the latent trait (means, variance), items of the questionnaire, sample size, expected patient's responses

Methods

- Planning phase of a study Associated assumptions (e.g. cross-sectional, Rasch model)
 - Group effect $\gamma \rightarrow \underline{expected}$ group effect (\geq MCID)
 - Variance of the latent trait $\sigma^2 \rightarrow \underline{expected}$ value
 - Number of items **J**, difficulty parameters δ_j (j=1,...,J) \rightarrow <u>expected</u> values
 - Expected number of patients in each group N/2 \rightarrow linked to power for fixed α
 - Expected patients' responses \mathbf{x}_{nj} (n=1,...,N) \rightarrow <u>expected</u> responses / other <u>expected</u> parameters

Power of the test – The Raschpower method

•
$$H_0$$
: $\gamma = 0$ against H_1 : $\gamma \neq 0$

Expected γ , δ_j , σ^2 and N_g

Expected dataset (patient's responses)

Estimation of γ and its variance

Estimation of the power $1-\beta_R$

Raschpower

Raschpower method – Does it work?

- Is Raschpower a valid approach for sample size planning for Rasch-family models?
- Is Raschpower robust to departures from the underlying modeling hypotheses?
 - Normality of the latent trait; local independence of items
- Investigated using simulation studies...

Simulation studies – Validity

- Simulated data → Rasch model
 - $\theta_0 \sim N(-\gamma/2, \sigma^2)$ et $\theta_1 \sim N(\gamma/2, \sigma^2)$
 - Variance of the latent trait $\sigma^2 \rightarrow 0.25$, 1, 4, 9
 - Group effect $\gamma \rightarrow 0.2$ (small); 0.5 (medium); 0.8 (large)
- Number of patients per group $N_0=N_1 \rightarrow 50$, 100, 200, 300, and 500
- Number of items $J \rightarrow 5$ or 10
- Difficulty parameters $\delta_j \to \text{Normal}$ or mixture of normal; possible gap Δ between the means of the latent trait and of the items parameters $\to \Delta = 0$, σ , 2σ

Methods - Simulated data

The Rasch model

- X_{ni}: response of patient n to item j
 - Realization x_{ni} (n=1,...,N; j=1,...J)
- θ_n : realization of latent trait for patient n
- δ_i : difficulty parameter for item j

$$P(X_{nj} = x_{nj} | \theta_n, \delta_j) = \frac{\exp\{x_{nj}(\theta_n - \delta_j)\}}{1 + \exp(\theta_n - \delta_j)}$$

 θ_1 , θ_2 , ..., θ_N mutually independent, Gaussian distribution assumed

Items distributions – No gap $\Delta = 0$

- (a) Normal distribution of items, $\Delta = 0$
- (b) Mixture of normal distributions of items, Δ = 0
- Regularly spaced items difficulties
- Irregularly spaced items difficulties
- Latent trait levels estimated with the same accuracy along the continuum
- # accuracy of latent trait : e.g. more accurate around -1 / above -0.5

Items distributions – Gap $\Delta \neq 0$

- (c) Normal distribution of items, $\Delta = 2\sigma$
- (d) Mixture of normal distributions of items, $\Delta = 2\sigma$
- Regularly or irregularly spaced items difficulties
- ➢ Gap between distributions creates a floor effect: the most difficult items are too difficult for the population

Simulation study – Validity

- For each replication (simulation)
 - ullet Estimation of group effect + its variance o Mixed Rasch model including a group effect

Difficulty items parameters

Variance of the latent trait

→ Set to expected planning values

- Wald test of group effect \rightarrow estimated power $1 \hat{\beta}_S$

■ Rate of rejection of H_0 at $\alpha = 5\%$

⇒ 1,000 replications

Results – Power with Raschpower (1- β_R), & simulations (1- β_S) – γ =0.5; σ^2 =1; δ_i Normal; Δ =0

For a given J

1- ≈ 1- _S

both 1 with J

For all values of σ² and all items distributions

Main results – Raschpower & simulations

■ Gap between latent trait & items distributions (γ =0.8; σ ²=9; J=5)

Gap
$$\Delta$$
=2 σ

1- < 1- $_{S}$

Power underestimated with Raschpower

More marked as σ^2 and γ 1

Raschpower method – Does it work?

- Raschpower seems to be a valid approach for sample size planning for Rasch-family models (no gap)
 - Cross-sectional studies, dichotomous and polytomous items (data not shown here)

➡ Plos One, 2013;8:e57279 ➡ Stat Med; under revision

Longitudinal studies, dichotomous items (data not shown)

⇒ J Appl Meas, 2014;in press.

- Gap between latent trait & items distributions
 - Recommendation when planning studies: selecting the most appropriate questionnaire for the population
 - Avoid: using specific questionnaires for the general population

Simulation studies – Robustness

- The Raschpower method Hypotheses
 - Normality of the latent trait
 - Locally independence of the items
- What if non-normal distribution of the latent trait

Robustness of Raschpower

- What if locally dependent items
 - e.g. SF-36 "Climbing one flight of stairs"; "Climbing several flights of stairs" etc.
- Simulation of dependent items (1 or 2 pairs of items)
- Analyses
 - Rasch model (assuming local independence)
 - IRT model taking local dependence into account
 - Raschpower (assuming local independence)
 - Raschpower taking local dependence into account

Robustness of Raschpower - Results

Power of test

No impact on the power of the test ≈

Raschpower seems to be a **robust** approach for sample size planning for Rasch-family models (cross-sectional studies, dichotomous items)

Raschpower method – Planning made easy?

- Well.....planning of studies ⇒ many issues
 - A lot of assumptions regarding expected values of parameters
 - Variance of the latent trait (σ^2), items parameters (δ_j), group effect (γ)...
- What if we make wrong assumptions? What is the impact on Raschpower?
 - Misspecifications: σ^2 and items parameters δ_j
- Investigated using simulation studies...

Misspecifications – Main results

- Misspecification of the variance of the latent trait
 - Underestimation of $\sigma^2 \Rightarrow$ overestimation of $1-\beta_R \Rightarrow$ underpowered study
 - More impact if group effect $\gamma \ge 0.2$ and σ^2 small (<2)
- Misspecification of the items distribution
 - No impact on the power of the test of group effect given by Raschpower $(1-\beta_R)$

Raschpower in PRO-online (freely available)

http://pro-online.univ-nantes.fr

PRO-online Easy PRO Analyses					PRO-online Easy PRO Analyses					
HOME	PRODUCTS	MANUALS	MOKKEN SCALES	RASCHPOWER	HOME	PRODUCTS	MANUALS	MOKKEN SCALES	RASCHPOWER	
The Raschpower procedure for cross-sectional studies gamma (> 0) n ₀ (≥ 1, integer) n ₁ (≥ 1, integer) variance (≥ 0.1) Difficulty parameters: Difficulty 1					The Raschpower procedure for cross-sectional studies Method: GH Number of individuals in the first group: 100 Number of individuals in the second group: 100 Group effect: .5 Variance of the latent trait: 1 Number of items: 5 Number of studied response's patterns: 64					
item 1 -1								Estimation with the Cramer-Rao bound classical formula		
item 2 -0.5				Estimated value of	the group effect	0.5		mula -		
item 3 0					Estimation of the s	.e. of the group effec	et 0.2	0		
The second secon					Estimation of the v	ariance of the group	effect 0.04	12		
item 4 0.5					Estimation of the p		0.69			
						for a power of 69.26	6% 100/1		54	
					Ratio of the number of patients 2.06					
Submit								s the power, at le		

- Sample size / power calculations for the Rasch model
 - Classical formula for manifest variables
 - Inadequate if Rasch model used for analysis
 - Underestimation of sample size
 - Development of the Raschpower method for power analysis
 - Seems valid and robust in ≠ situations
 - Cross-sectional / longitudinal studies
 - Dichotomous / polytomous items

- Sample size / power calculations for the Rasch model
 - Two main parameters have an impact power
 - Size of the questionnaires (number of items J)
 - Heterogeneity of the sample (variance of the latent trait σ^2) \Rightarrow requires careful planning assumptions
 - Potential for sample size re-estimation
 - Importance of choosing suitable questionnaires for the population under study
 - Gap (between latent trait and items distributions)
 effect on power
 - BUT not specific to IRT

- Some drawbacks...
 - Complexity of the approach?
 - Raschpower in PRO-online can help
 - Link between classical formula and Raschpower

⇒ manuscript submitted

- Assumptions (inherent to planning phase of studies)
 - Underlying model
 - Size of group effect
 - Items parameters
 - Expected patient's responses (depending on previous assumptions)

- ...and some perspectives
 - The \neq of the latent traits means $\gamma \Rightarrow \underline{\text{interpretation}}$ of a minimum clinically relevant \neq on the latent trait scale? \rightarrow unresolved issue yet...

➡ J Clin Epidemiol, 2014;67:433-40.

- How can we determine a MCID on the latent trait?
 ⇒ MIDIPRES project (work in progress)
 - ... and on the score? Have we reached consensus yet?