

Assessment of health status over time by prevalence and weighted prevalence functions Interface in R

Cabarrou B⁽¹⁾ Jouin A⁽²⁾ Boher JM⁽³⁾ Kramar A⁽²⁾ Filleron T⁽¹⁾

- (1) Biostatistics Unit, Institut Claudius Regaud. Toulouse.
 - (2) Centre Oscar Lambret. Lille.
 - (3) Institut Paoli Calmettes. Marseille.

Context

- During treatment and follow-up, patients are exposed to a finite number of states depending on complications, relapse or death
- Possible states of patients during follow-up

- Worst grade method: frequency of patients who enter in the complication state (binary rate)
- Survival and Competing risks analysis: take into account time until event but only consider first event

Prevalence function (Pepe, 1991)

- Take into account duration and possible repetitions of complications
- Defined as the probability of being in the complication state C_k at time t conditionally to be alive and relapse-free at this time

$$Q_k(t) = P[alive\ in\ C_k\ at\ t\ /\ alive\ and\ relapse - free\ at\ t]$$

• Prevalence function is estimated using combination of Kaplan-Meier survival function $\hat{S}_{_X}(t)$ at time t

$$\hat{Q}_{k}(t) = \frac{\sum_{m=1}^{M} \left[\hat{S}_{CU}^{m}(t) - \hat{S}_{CT}^{m}(t) \right]}{\hat{S}_{RD}(t)}$$

- M: number of maximum entries in the complication state
- ullet CT_m : time until entry into complication for the m^{th} time or until relapse or death
- ullet $CU_{\scriptscriptstyle m}$: time until exit from complication for the $\,m^{\scriptscriptstyle th}\,$ time or until relapse or death
- RD: time until relapse or death

Weighted Prevalence function (Lancar & Kramar, 1995)

• Defined as the sum of the prevalence function for each severity grade of complication with a respective weight $w_1 < w_2 < ... < w_K$

$$w\hat{Q}(t) = \sum_{k=1}^{K} w_k \hat{Q}_k(t)$$

- Weight vector needs to be fixed in advance
- Take into account the severity of the complication
- Interpretation is more difficult :
 - > Results can be different according to the weights
 - ightharpoonup Not a proportion of patients ($w\hat{Q}$ can be greater than 1)
- Comparison between groups :
 - Weigthed Kaplan Meier Statistical Test (Pepe , 1989)

R Functions

main.preval.func / main.wpreval.func

- Interface to estimate the prevalence and weighted prevalence functions
- Implementation of additional analysis elements
 - Descriptive statistics
 - Worst grade method
 - Survival analysis
 - Competing risks analysis
 - Bootstrap Confidence Intervals
 - > Statistical Tests to compare estimations between groups

Prevalence & Weigthed Prevalence

- R packages needed to download
 - > survival
 - > cmprsk

Inputs (1)

main.preval.func(visit,fu,gm,tmax,tp,met,N,export)
main.wpreval.func(visit,fu,gm,p,tmax,tp,met,N,export)

visit: Data file containing information about patient's health state

fu: Data file containing information about patient's follow-up

Inputs (2)

- gm: minimum severity grade taken into account (1 to 5)
- p: vector of weights (numerical vector)
- tmax: maximum delay taken into account
- > tp: timepoint where estimations are displayed
- met : Statistical tests and 95% confidence intervals (logical vector)

- \triangleright N: number of iterations in tests and confidence intervals computing (> 20)
- export : Export pdf graphic to the current work file (T or F)

Example

- Phase III trial comparing two low dose rates in brachytherapy
- 204 patients randomized between two groups :

→ OBJECTIVE : Evaluate type and severity of acute and chronic complications

Example: Inputs

```
main.preval.func(visit,fu,gm,tmax,tp,met,N,export)
main.wpreval.func(visit,fu,gm,p,tmax,tp,met,N,export)
```

- visit and fu files are imported as matrix under R
- ightharpoonup gm = 1 (main.preval.func: C_1 to C_5 are considered as the same state!)
- \triangleright p=c(1,2,3,4,5)
- \triangleright tmax = 1825 : Study period equals to 5 years
- \triangleright tp = 730 : Estimation at 2 years
- \triangleright met = c(T,T,T): The two tests and confidence intervals are computed
- > N = 2000
- export = T: pdf graphic is exported to the current work file

Example: Results

```
main.preval.func(visit,fu,1,1825,730,c(T,T,T),2000,T)
main.wpreval.func(visit,fu,1,1:5,1825,730,c(T,T,T),2000,T)
```

Entitled

Data check: Checking consistency on the data files and input parameters

Example: Results (2)

main.preval.func(visit,fu,1,1825,730,c(T,T,T),2000,T)
main.wpreval.func(visit,fu,1,1:5,1825,730,c(T,T,T),2000,T)

Descriptive statistics

+-----+ | Descriptive statistics | +-----+

- Maximum delay taken into account : 1809
- Minimum grade : 1
- Weight vector: "1" "2" "3" "4" "5"

			1	complication state
Total	Gı	coup A	Group B	
				Total number of entries in complication state
Number of subjects	204	102	102 /	
Number of first entries in C	139	63	76//	Number of patients cured from all
Total number of entries in C	166	70	96	complications
Total number of exits to C	98	47	51	Niverbay of volumes ay death
Number of RD	61	26	35	Number of relapse or death
Number of subjects RD in C	26	9	17	Number of patients who relapsed or
Number of subjects RFS in C	42	14	28	died while in a complication state
				Number of patients lost to follow-
			2	up while in a complication state

Number of patients entered at least once in

Example: Results (3)

main.preval.func(visit,fu,1,1825,730,c(T,T,T),2000,T)
main.wpreval.func(visit,fu,1,1:5,1825,730,c(T,T,T),2000,T)

Worst grade method : Comparison of patient's worst grade observed

Survival analysis: Complication Relapse Death Free Survival

1500

Example: Results (4)

main.preval.func(visit,fu,1,1825,730,c(T,T,T),2000,T)
main.wpreval.func(visit,fu,1,1:5,1825,730,c(T,T,T),2000,T)

Competing risks analysis

```
First complication
          Cumulative incidence (Competing risks)
     - Cumulative Incidence of first complications
                                                                       \overline{\circ}
           + Estimate at t = 730
              Group A Group B
Estimation
                 0.624
                          0.731
                                                                                      500
                                                                                              1000
                                                                                                       1500
Lower 95% CI
                 0.518
                          0.632
Upper 95% CI
                                                                                             time
                 0.713
                          0.808
                                                                                  Not significant!
           + Gray test statistic = 1.442
                                                   df = 1
                                                                 p = 0.23
                                                                                       Relapse/Death
     - Cumulative Incidence of relapse/death
           + Estimate at t = 730
                                                                       \overline{\circ}
               Group A Group B
Estimation
                 0.093
                          0.109
Lower 95% CI
                 0.045
                          0.057
Upper 95% CI
                 0.162
                          0.180
                                                                                     500
                                                                                             1000
                                                                                                      1500
                                                               p = 0.718
           + Grav test statistic = 0.13
                                                  df = 1
                                                                                                            13
                                                                                   Not significant!
```

Example: Results (5)

main.preval.func(visit,fu,1,1825,730,c(T,T,T),2000,T)
main.wpreval.func(visit,fu,1,1:5,1825,730,c(T,T,T),2000,T)

Prevalence analysis

- Prevalence estimate at t = 730

Group A Group B
Estimation 0.305 0.528
Lower 95% CI 0.204 0.413
Upper 95% CI 0.414 0.642

- WKM test statistic = 1452.22

p.boot = 0.002

Weighted Prevalence Analysis

- Weighted Prevalence estimate at t = 730

Group A Group B
Estimation 0.509 0.898
Lower 95% CI 0.325 0.682
Upper 95% CI 0.713 1.126

- WKM test statistic : 2537.372

p.boot = 0.002

p.perm = 0.004

14

Significant!

In summary

- Two functions design for Quality Of Life Survival Adjusted analysis using Prevalence and Weighted Prevalence functions
- Both functions return list of objects in order to make additionnal analysis and graphics
- Take into account duration and possible transitions into the different states
- Non-parametric methods : Markov and semi-Markov assumptions are avoided
- Compare to QTWiST method, Markov and semi-Markov (Project QOLSA)

References

- Pepe, M. S., Longton, G. and Thornquist, M. 'A qualifer Q for the survivor function to describe the prevalence of a transient condition', *Statistics in Medicine*. 10, 413-421 (1991)
- Lancar R, Kramar A, Haie-Meder C. Non-parametric methods for analysing recurrent complications of varying severity. *Statistics in Medicine*. 14(24):2701-272 (**1995**)
- Therneau T M. survival: Survival analysis. R package version 2.37-4. (2013). http://www.r-project.org
- Gray R. cmprsk: Subdistribution Analysis of Competing Risks. R package version 2.2-6. (2013). http://www.r-project.org
- Gelber ED, Goldhirsch A, Castiglione M, Price K, Isley M, Coates A. Time without symptoms and toxicity (TWiST): a quality-of-life oriented endpoint to evaluate adjuvant therapy. *In: Salmon SE*, ed. Adjuvant therapy of cancer V. Orlando: Grune & Stratton, 1987:455-65.

Thank your for your attention!